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Abstract—The combination of triflic anhydride and 2,6-di-tert-butyl-4-methylpyridine was found to be a selective reagent system
for the conversion of cyclic 1,3-diones to the corresponding monotriflate derivatives. The use of N-(5-chloro-2-pyridyl)triflimide
together with KHMDS was selective for the preparation of the corresponding ditriflates. The Suzuki coupling reactivity of both
the mono- and ditriflates was also explored. © 2001 Elsevier Science Ltd. All rights reserved.

Vinyl and enol triflates are proving to be extremely
versatile coupling partners and have been shown to
participate in a variety of cross-coupling reactions
including variants of the Stille,1 Suzuki2 and Heck3

reactions.4 We proposed that the mono- and ditriflates,
such as 2 and 3, derived from cyclic 1,3-diones would
be useful building blocks for use in target syntheses or
as substrates for desymmetrisation studies.5 We there-
fore set out to determine reaction conditions to allow
the selective production of either the mono- or ditrifl-
ates. A concern at the outset of this study was the
stability of the required triflates, and in particular their
stability towards flash chromatography.

Initial attempts at the preparation of ditriflate 3 focused
on the use of triflic anhydride in combination with a
variety of bases, however, only low yields of ditriflate 3
were obtained with the monotriflate forming preferen-
tially. Optimisation of these conditions (2 equiv. Tf2O,
2.2 equiv. 2,6-di-t-Bu-4-Me-pyridine, DCE, 80°C)

allowed the monotriflate 2 to be obtained in good yield
(Scheme 1).6 The use of N-phenyl triflimide as the
triflate source was similarly unsuccessful for the pro-
duction of 3.7 However, the combination of the more
reactive triflating reagent N-(5-chloro-pyridyl)triflimide
4 and KHMDS delivered the ditriflate 3 as the major
product.8 Optimised conditions involved treatment of
diketone 1 with 2 equiv. of KHMDS followed by 2.2
equiv. of 4 in THF at −78°C to furnish the required
ditriflate in 81% yield. Ditriflate 3 was isolated as an
amorphous white solid that could be readily purified by
crystallisation or flash chromatography upon silica
gel.

These two sets of complimentary reaction conditions
were then successfully applied to two further diketone
substrates.9 Both the mono- and ditriflate derived from
the corresponding dimethylated 1,3-diketone were
obtained in excellent yields (5 90% and 6 92%, respec-
tively, Fig. 1) and again both were stable to purification

Scheme 1.
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Table 2.

XSubstrate Time (h) Yield 12Yield 11
(%)(%)

24.0 8CH23 7
C(Me)2 4.06 31 17
– 1.0 71 08

Figure 1.

by flash chromatography.10 The two triflates originating
from the cyclopenta-1,3-dione substrate were also
obtained in good yields (69% monotriflate, 73% ditrifl-
ate).11 Pleasingly, the potentially reactive conjugated
diene system present in ditriflate 8 proved to be simi-
larly stable to chromatography.

With the synthesis of the required mono- and ditriflates
achieved, we chose to explore their reactivity in Suzuki
cross-coupling reactions and these preliminary findings
are presented below in Tables 1 and 2.12 Gratifyingly,
the six-membered monotriflate 2 underwent reaction
with 4-methoxyphenylboronic acid 9 in the presence of
Pd(OAc)2 (10 mol%), PPh3 and KOH, to deliver the
coupled product in 91% yield (Table 1). Given the high
steric-crowding in the immediate environment of the
triflate functionality, the mild reaction conditions
(room temperature) and short reaction time (40 min)
for this transformation are particularly noteworthy.13

The dimethylated analogue 5 also performs well deliv-
ering the coupled product in 69% yield after 80 min.
Surprisingly, the five-membered monotriflate 7 showed
poor reactivity and after 18 h reaction, only 12% of the
coupled product was isolated.14

Of the ditriflate substrates the five-membered system 8
underwent facile coupling to provide the mono-coupled
material in excellent yield; none of the dicoupled mate-
rial was observed. The dimethylated six-membered sys-
tem 6 also performed well showing good reactivity,
although the desired mono-coupled material decom-
posed under the reaction conditions resulting in a low
isolated yield. The unsubstituted six-membered sub-
strate 3 performed poorly, yielding only low yields of
the two coupling products.

The reason for the poor reactivity of both the five-
membered monotriflate 7 and the six-membered ditrifl-
ate 3 is unclear at present. However, the allylic protons
in both 3 and 7 are more acidic than those present in
the other substrates, this combined with the use of
KOH as base may be responsible for the observed poor
reactivity.

In summary, we have described complementary condi-
tions for the selective production of either the mono- or
ditriflate derivatives from a range of cyclic 1,3-diones.
We have also demonstrated that several of these highly
functionalised substrates undergo facile Suzuki cou-
pling reactions under mild conditions. Further studies
on the coupling reactions of these substrates together
with details of their use in desymmetrisation reactions
will be reported in due course.
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